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A THE ORY OF TURBULENCE IN A HOMOGENEOUS FLUID

INDUCED BY AN OSCILLATING GRID

By
Rob ert R. Long

The J ohns Hopkins University, ~altlmore , Maryland 21218

Several investigators have ran experiments to study turbulence in a con-

tainer of homogeneo us fluid caused by a grid extending horizontally across the box

and oscillating vertically. The more recent experiments Indicate that the root-mean-

square horizontal velocity ; is proportional to the oscillation frequency f and is

inversely p roport ional to distance from the grid, and that the integral length scale L

Is proportional to this distance and indep endent of f. A theoretical model is based

on the Navier-Stokes equations and the no-slip boundary condition but contains no

other assumptions. The statistically steady behavior Is as observed in the exp en-

ment. In the unsteady case, the front separat ing turbulent and non-turbulent fluid

propagates at a speed inversely proportional to the square root of time.

The problem has Importance with respect to the mixed layer in the upper

ocean or th e lower atmosphere. The present model does not consider buoyancy

effects but if a passive contaminant Is present the mean concentration is governed

by the one-dimensional diffusion equation with constant turbulent coefficient of

diffusion .

Bouvard and Dumas (1967) constructed an experiment with confi guration

represented in fIgure 1. A grid Is oscillated vertically with stroke S and fre-

quency f i n  a container of homogeneous fluid. The motion induced Is turbulent

and interest is attached to the root-mean-square horizontal velocity o~ and

.~
., 

~~~~~~~
.—.— - . -  -. .- • - - —  -

~~~~~~
. 

~~~~~ .—. .— .—~--- -



—2-

the integral length scale 2 as functions of distance from the grid (or of distance z
from some virtual energy source), the frequency f, the stroke S and the lengths
M1 , M2 , . . .  characteristic of the grid geometry and position. The problem was
also investigated experimentally by Thompson and Turner (1975) and very recently
by Hopfinger and Toly (1976). Thompson and Turner ’s data suggest that o~ 2 is

independent of distance from the grid and that a,, is proportional to the frequency
of oscillation of the grid f at any given level. These two behaviors were also
found by Hopfinger and Toly. They also measured 2 and found £ z , so that
a,, z ’.

To obtain an understanding of this experiment , we solve the problem of

statistically steady, finite motions in a Newtonian fluid filling infinite space

induced by a steady disturbance source on the plane z 0 whose properties are
independent of x and y. The properties of the motion should be the same as those

in the experiment if the frequency of oscillation of the grid is large and the stroke

and its geometrical lengths are small. A complete comparison , however , requires
relations between some parameter or parameters cha racterizing the theoretical

source and f , 5, v, M~ , M2

We begin by considering a thin “source” layer -d < z < d. The layer

may contain a grid Or some other arrangement conveniently constructed in the

laboratory or In the mind. htegratlng the averaged energy equation from d to z,
we get

0 = _ Fa + E a _ D a 
(1)

“I
where ? and E5 are the energy fluxes w(p/p + qa /2) averaged over the planes at

distances z and d respectively from the plane z 0, and i? is the total energy

dissipation ,
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D3 =-v Sd
(Su+ v~~v+wvaw)dz (2)

In the expressions above, u ,v,w are the velocities in the x,y, z directions , p is

pressure, p Is the uniform density and q is the fluid speed.

If d is finite and non-zero, Ea is finite and non-zero If we require that

the velocities at all z be finite and non-zero. Then , for example, a,, will vary

in some complicated way with Ea, d, z, v and other quantities that depend on the

nature of the energy source. Evidently we may improve the situation by letting

d — 0. Let us assume, tentatively, that we have the freedom to construct an

energy source that produces disturbances near z = d with the following properties:

(a) The only length scale is d, I. e. derivatives with respect to

x,y, z vary as d~ when operating on any non-constant quantity.

(b) The velocity varies as c1~~, where n is a universal constant.

(c) The v~rticity ~ is proportional to the velocity scale divided

by the length scale, i. e., d~~~ .

(d) The average energy flax on the plane z = d Is of order d ~

We will see later that we have this freedom.

Since F3 is finite and non-zero, t? cannot be zero as d -. 0. If t? is

finite and non-zero, E3 is finite and non-zero. But Ea /d is proportional to the

dissipation function e just outside the source layer . Using properties (a) -(d) ,

we get

This means that the velocities at z d tend to zero so that E3 is zero. The

contradiction reveals that E3 and D2 are both large and since F3 is finite E3 
—~ Da .
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Again, E2 Id is proportional to the dissipation function just outside the source

layer so that

d 3
~~

1 
~— d 3

~~
3

or n = 1. Thus E3 tends to infinity but E3C13 tends to a finite quantity, which we

call K3. The constant K and the viscosity v are the only two parameters of the

problems. Dimensional analysis yields, for example

2~~ =A ~, , = A 2 (3)

where AL and A2 are functions of the Reynolds number K/v. As K/v — 
~~~, they

become universal constants.

We now demonstrate that a flow near z = d may be chosen wit h the four

properties listed above. We put doublets of strength ~i dd (finit e ~t )  at all points

(nd, md , 0) where n and m are all of the positive and negative integers. Doublet s

with axes in the direction of x positive and x negative correspond to n+ m even and

n+m odd, respectively. We also impose a rigid plane at z = 0 with infinitesimal

holes for the doublets. The no-slip condition insures that there will be vorticity.

The length scale of the motion near z = d is d times a function of k/v and so has

the property (a). The velocity scale near z = d is id and so has the property (b).

There is vorticity and the scale is proportional to d 3 so has the property (c) .

Finally, an irrotational fluid in steady state has a uniform value of p/p + q2 /Z and

It is then clear that the corre~ tion in the mean energy flux term Is zero. In the

present problem there is loss of energy because there is vorticity and viscos ity so

that on the average (p/ p + q3/2) will be less for incoming flui d than for outgoing

fluid at the plane z d. The difference is ~~/d3 times a function of ‘iv and the
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mean flux on z = d is of order ~i3/d3, satisi~ring property (d) .

The variation of a,, and 2 with z in (3) agrees well with experiment.

Equation (3) also reveals that a,, is proportional to K. If we now neglect the

effect of viscosity, the frequency f is the only experimental parameter involving

time so that a,, should be proportional to f as observed. Notice , however, that

a relationship between K and f is analogous to the drag coefficient in shearing

flow and the latter is known to Involve the Reynolds number, although weakly,

when the Reynolds number is large (Monin & Yaglom , 1971). Therefore , o~ /f
may , on close inspection , vary slowly with f.

The experiments and theory relate to the important problem of the

mixed layer In the upper ocean and the lower atmosphere, where, however,

buoyancy is important dyna nically. The mean buoyancy b, or more generally,

the concentration of any contaminant is subject to the equation

~b a
~~~- K Dr)  (4)

where KD Is the eddy diffusivity . If the buoyancy variation is weak or, more

generally, If the contaminant is dynamically unimportant , KD is proportional to

the const ant eddy viscosity and (4) may be solved for b subject to initial and

boundary conditions.

Finally, consider the initial value problem when the energy source ‘ egins

at t = 0 In an infinite fluid at rest. A front separating turbulent and non-turbulent

fluid will move away at a speed u = cp (K , v, t). Therefore,

= A3 (5)

where A3 is a function of K/v .
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LEGEND

Figure 1. Schematic diagram of the experimental apparatus.
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Several investigators have run experiments to study turb ulence in a container of
homogeneous fluid caused by a grid extending horizontally across the box and oscillating
vert ically. The more recent experiments~indicate that the root-mean-square horizontal
velocity ; is proportional to the oscillation frequency f and is inversely proportional to
distance from the grid, and that the integral length scale £ is proportional to thi s distance
and independent of f. A theoretical model is based on the Navier-Stokes equations and the
no-slip boundary condition but contains no other assumptions. The statistically ~e ady

4’ behavior is as observed in the experiment. In the unsteady case, the front separating
• turbulent and non-turbulent fluid propagates at a speed inversely proportional to the square

root of time.

‘ The problem has importance with respect to the mixed layer in the upper ocean or
in the lower atmosphere. The present model does not consider buoyancy effects but if a
passive contaminant is present the mean concentration is governed by the one-dimensional

S diffusion equation with constant turbulent coefficient of diffusion.
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